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Abstract In this work! we introduce a complementarity- 1 Introduction

based rolling friction model to characterize dissipatihep

nomena at the interface between moving parts. Since tholling resistance has attracted the interest of reseesche
formulation is based on differential inclusions, the modelsince the early ages of applied mechanics [37, 8, 26]. During
fits well in the context of nonsmooth dynamics, and it doeghe past two centuries many models have been proposed,
not require short integration timesteps. The method encondepending on the required level of detail and on the type
passes a rolling resistance limit for static cases, similaof phenomena that cause the rolling resistance; usually the
to what happens for sliding friction; this is a simple yet number of parameters increases with the complexity of the
efficient approach to problems involving transitions frommodel. At one end of the spectrum, for instance, there is case
rolling to resting, and vice-versa. We propose a convex reef the rolling tire, which often requires sophisticated ralsd
laxation of the formulation in order to achieve algorithmic with a large number of parameters [24]. In this work, on the
robustness and stability moreover, we show the side effectgther hand, we are interested in a model that has a small
of the convexification. A natural application of the model number of parameters but is easily applicable to problems
is the dynamics of granular materials, because of the higlvith large number of parts, or with requirements of high
computational efficiency and the need for only a small secomputational efficiency in general. Superior performance
of parameters. In particular, when used as a micromechanstems from the adoption of a set-valued formulation that
cal model for rolling resistance between granular pawicle finds the solution in terms of a complementarity problem.
the model can provide an alternative way to capture the ef- The advantages of a complementarity-based rolling fric-
fect of irregular shapes. Other applications can be related tion model are multiple: it encompasses both the moving
real-time simulations of rolling parts in bearing and guide and the static cases, it does not require regularization and
ways, as shown in examples. stiff force fields, it is an intuitive extension of the clas-
sic Coulomb-Amontons sliding friction model to the rolling
case, and it requires few parameters. A literature search re
veals only a few contributions on this topic; among these we
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etc.) In the context of granular material dynamics, rollingx on [0, T],
friction between microscopic spherical particles has itie s

effect of approaching, on a macroscopic scale, the sam@X = f(t,x,u) 2
global behavior of the granular assembly if it were modeleddt
with many faceted irregular shapes: there exists a relation € SOL (K, F(t,x(t),-)), 3)

betyveen the degre_e_ of irregularity of the surfaces and thglong with boundary conditions (x(0),x(T)) = 0. For the
rolling friction coefficient [9].

class of mechanical problems that we are interested in, for

In the literature, typical approaches to the simulation Ofexample, the state can be= {q",vT}T, with positionsq

contacts are based on the regularization of contact forceghd velocitiesy. and withu as the set of reaction forces
such forces, which are discontinuous in nature, are apPrO%pat must satisfy a VI. References about DVIs can be found

imated by smooth functions. Smoothness allows the proqh [29,28]; details about their practical implementations

lem to be dealt as system of ordinary differential equation?erms of timestepping schemes can be found, for instance
(ODEs), the drawback being that the resulting ODEs, whilg 30,2, 16, 25,31, 11] ’ '

tractable, are stiff, thereby requiring short timestepd an

leading to hiah tational ti 121 The adooti f In the following we show that the introduction of set-
_ea _|n_g .0 '9 compy ationa _|mes [12]. e_ a, OPtON OFy 4 1ued rolling friction does not affect overly the complex-
implicit integrators might alleviate, but not eliminatéet

ity of the original DVI problem; the computational re-

|s7,sue ofts'tlffnless. Fto;'lnstar}cti, s:jnce t?e slemlna: WO;E O4uirements are simply doubled with respect to the case of
[7], most implementations of the discrete element metho st sliding friction. Also, spinning friction (also knowas

(DEM) for the simulation of granular materials are base rilling friction) can be added easily in a similar way.
on regularization of contact forces and stiff ODEs. For very

large systems, regardless of the fact that one can exploit
powerful hardware, the computational time can be so higl} Set-valued rolling friction
that some problems become untractable.

For this reason in [32] we proposed an approach baseg this paper we use set-valued functions to model rolling
on differential variational inequalities (DVIs), as aneat  contact forces between rigid parts. Such model has math-
native to the classical regularization-based approadtes. ematical similarities with the model for sliding frictiom i
DVI approach, whose capabilities are not necessarily conhe Amontons-Coulomb theory; similar to the Amontons-
fined to granular problems, is a recent general way of dealeoulomb friction model, the proposed approach requires a

ing with nonsmooth mechanical problems; the approach ersmall number of parameters to describe the rolling resis-
compasses ODEs as subcases as well as complementarifynce effect.

based methods. In DVIs one can describe forces by means of
set-valued functions (multifunctions) that capture thes:o
mooth nature of models such as the Signorini contact lavg 1 Rolling friction phenomena
or the Coulomb friction; no stiff regularizations of dis¢dn
nuities are needed because discontinuities are preseinted d
rectly as complementarity constraints. Large timesteps ar
allowed, but at the cost of solving a variational inequality
problem (a complementarity problem, in the simpliest case)
for each timestep [25].

A generic variational inequality (V1) is a problem of the

type

uekK : (F(u,y—u)>0 WekK 1)

. . . Fig. 1 Rolling friction. Two examples in the two-dimensional case.
given a closed and convék € R" set, and given a continu- g g P

ousF (u) : K — R". We callSOL(K, F) the solution of prob-

lem (1). Variational inequalities are powerful mathemaitic Although the nonsmooth nature of the sliding friction

tools that have recently been used also in game theory, cofs evident in nature, because the friction force is abruptly

tinuum mechanics and other scientific fields; a good referclamped to a maximum value as soon as the objects start

ence is [18]. sliding, the same sharpness is not evident in the experimen-
Assuming that the state of the system is definedkby tal observation of the rolling friction, because rollingcfion

one can define a DVI as the problem of finding the functioneffect increases smoothly as the rolling speeds increlses.
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fact, resistance to the rolling motion usually takes plage b 2.2 Three dimensional rolling friction model

cause in the contact area there may be inelastic defornsation

of elasto-plastic materials [24]: the final outcome of thish  For extending the two-dimensional rolling friction model
teretic deformation is that the resultant of all pressused-i  to the generic case of contact between shapes in three-
ways placed a bit ahead of the position that it would take idimensional space, we introduce the following assumption
the parts were not rolling.

Many classical textbooks about applied mechanics [37, ASSUMPTION Al:The resisting torque is opposite to
8,26] describe a simplified model for this effect, consider-he relative (rolling) angular velocity of the two bodies, i
ing a rolling wheel of radiuf and expressing the displace- 8-
ment of the contact force by a sindléction parameterp,

which has the dimension of length, or by a dimensionless Although Assumption .Al 'S. always verified for Z.D.
coefficient of rolling friction § — p/R. The latter is also problems, in some three-dimensional problems the registin

i . - ... torque can be misaligned with respect to the relative angu-
meant to allow an easy comparison with sliding friction: . . L .
. . . . . lar velocity. See Appendix A for a derivation of the relative
Given a normal forceN acting on a rolling disc, the hori-

zontal force that is needed to keep it rolling at contantdpee‘f’mgm"’lr velomty. . )
isT = f,N, (see Fig. 1), similar to the Coloumb sliding fric- " cases with plane symmetry in the surroundings of
tion caseT = fN, with fs the coefficient of dry sliding fric- the contact (for instance if the area of contact between two

tion. Equivalently, the effect of on the disc can be replaced "0!ling bodies is an ellipse aligned to the rolling directio
with a tractive torquéV = TR that is,M = f,NRor and the material properties are anisothropic), the speed of
’ P deformation of the material is symmetric with respect to the

plane of rotation, thus resulting in a symmetric pressuse di
M = pN. (4)  tribution at the area of contact, regardless of the type f vi
cous constitutive law of the material. In this case, Assump-

This model is highly nonlinear because it states that théIon Al is always verified. This happens, for example, in

displacement, whose amount gsregardless of the speed, case of spheres that are in contact, each with anisothropic

has to change direction when the rolling speed Ch(,;W‘:]elglaterlal, orin spheres that are rolling on flat surface_s. _
sign and must go to zero if there is no rolling speed. This Another special case that has much relevance in engi-

tristate model cannot be used practically within a general"€€ring applications is the contact between two surfaces th
purpose numerical simulation framework because scenarig@n Pe locally approximated as two cylinders with parallel
often occur where a sphere or a disc should come to re&€S- This happens, for instance, in cam followers and in
over a horizontal surface: since numerical roundoff consid"!lers over flat surfaces. In these cases, the torque isealig
erations make impossible that the speed will be exactly nulf© the rolling angular velocity.
the speed may actually oscillate around the null value, but In other situations, such as in the case of two generic
even small oscillations will change the sign of the rolling €llipsoids, the pressure distribution in the area of cdntac
Speed and, Consequent]y, also the disp|acement of the Co“hat is elliptical and not necessarily with one of its main
tact force will oscillate over the endpoints of thep,+p  axes aligned to the direction of rolling) generates a normal
interval. The final result will be numerically unstable. reaction whose offset with respect to the plane of contact
For this reason, we express the rolling friction model (4)Might be notaligned to the direction of rolling, thus resgt
as the following constraint with inequality in a resisting moment that is not exactly aligned to the wecto
of the angular velocity.
Given theith contact, among two bodigsandB, let n'
be the normal at the contact point, directed toward the exte-
rior of theA body. Letu' andw' be two vectors in the contact
wherea is the rolling angular velocity, which must be op- plane such that',u’,w' € R® are mutually orthogonal vec-
posite to the rolling resistant momewit The third condition  tors.
of Eq. (5) can also be written @M, ) = —||M|]|||ax||. The signed gap functio®' represents the contact dis-
Note that for whatever positive or negative rolling speedfance. For each contact that is active (thatig-) = 0 be-
this model corresponds to the classical rolling-frictiondal ~ cause bodies are touching), we introduce the contact forces
(4), but for the transition from steady state to moving siiate While inactive contacts®'(-) > 0) do not enforce any reac-
changes the displacement in thep, p] limit. With this im-  tion.
provement, the model can be seen as the counterpart of the The normal contact force By, = y,n', wherey}, > 0 is
Amontons-Coulomb friction model, because both can conthe multiplier that represents the modulus of the reaction.
sider the static case. Friction force, if any, is represented by the multipligfs

IM[ < pI[INI|,  [[ax[[(pPN—=M) =0, Ma <0, (5)
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andy}, which lead to the tangential component of the reacthat is opposite ttv‘T, the tangential component of the rela-

tion Fi = yu' + ywi. tive velocityV! , if any, thus requiring
Because of the inequalify, > 0, the mathematical de- . -
scription of this unilateral model involves the Signorinine- MV > V Yoo+ Y
plementarity problem [30]: HvlTH (ui%_ /%2+V\-N2> —0, 9)
hz0 L ol)zo © L () == [P [1ve]

We introduce the rolling friction torque using the multi-
pliers i, T, andT,, which correspond to a normal compo- 3 The complete DVI model
nent of the torqué §, = T/,n' and two tangential components
of the torqueM’ = Thu' + T}, w'.

The normal component of the torque}\, is responsible
for friction that reacts to spinning around the verticalsaxi
while the tangential componel’. = Tiu' + Ti,w' is the ef-
fect of the classical rolling friction. The model (5) is ex-
tended to the three-dimensional case, the following inequa
ity holds for nonzero rolling velocity.

The system state is defined by the vector of generalized
coordinateqy € R™ and the vector of generalized speeds
v e R™. It might happen thatng > m, because rotations of
rigid bodies in three-dimensional space are representiéd wi
unimodular quaternions € H; to avoid singularities in the
parametrization 0$O(R, 3); anyway it is straightforward to
define a (linear) mafg = I (q)v if q is needed.

We also introduce generalized force fieltigq,v,t)

‘||\/|'T|| < pyh and gyroscopic force$:(q,v) giving a total force field
fi(q,v,t) e R™,
This corresponds to the inequalmi/% > ,/ﬁj%r’ﬂ\'/vz_ The inertial properties of the system are represented by

The rolling velocity vector) is the part of the relative the mass matritm(q) € R™*™, assumed positive definite,
angular velocity vectow} that lies on the contact plane, that Usually block-diagonal in the case of rigid bodies only.

is, “*'r = —n <wirni>; the condition that requires)iT to Bilateral constraints are introduced through a . geof

be aligned and opposite MiT can be expressed as scalar constraint equations, assumed differentiableyever
where:

(M, @r) = —| M| o] V=0 ica 10)

Therefore, the full rolling friction model for a contact e introducelq¥' = {dq}i/aq]T andOwi’ — DqL.U‘TI'(q),
with rolling friction parametep' is mathematically equiva- g express the constraint (10) at the velocity level aftér di

lent to the following constraints: ferentiation:

. dwi(q,t) T oY _

[ — 2 =y — =0 AB. 11
P dt VP 0 S ()
||W'T|| PV — /ﬂl2+ﬂN2 =0, (7) Frictional unilateral contacts define a set For each

M b — M i contacti € </, we introduce the tangent space generators
(M7, @r) = —[[My [ [[or|]. D), Dy,» D&, DY, Df, € R™; for details about their for-
Additionally, one can introduce the spinning friction, mulation, see Appendix B.

represented by a parameter giving Another way to write (7), (8), and (9) is to use the max-

imum dissipation principle, thus leading respectivelytte t
following constraints on the dynamic equilibrium

o'Vh > T
wi || (o'y,—T) =0, (8) o _ o
bl e (53 = gy (04,701, 7
N» UN N NI|- st (ﬂn{ﬂw) c %I (12)
Rolling contacts can be either sliding or not sliding. i A T3] 12, 712 <pi7}
In the former case there could be also tangential forces ' wowIy e W =
caused by dynamical friction; in the latter case there could (’ﬂn) = argminv’ (D'Tn’ﬁn)
be forces caused by sticking, the consequence of static fric S,t,ﬁ] c gfsl (13)
tion. Therefore we must introduce the Amontons-Coulomb i A (7] |7 < o'}
friction model to take care of the tangential forces, either =~ ° von o
sliding or static. (Vi Yor) = argminv (DVU?LJFDMNVW)
Within the classic theory of dry friction, the friction co- st (Vo V) € Z5 (14)

A I . . . _ A . . .2 .2 ..
efﬁm_entu limits the ratio betvyeen the normal and th.e tap 212 (VB E+ 2 < IJ'%}
gential force, and the tangential force must have a directio
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Here, 2/, Zd, and, respectively{, are the rolling,
spinning, and respectively, friction cone sections. Alger

tively, for the case where the tangential rolling torquesa ql+h =
zero, we derive the Fritz John optimality conditions for the (41) _
nonlinear program (12), Mv
s=0r, 5,V (Dry Ty + D, Thy) + i€ :
N PR (p% —\/ T +ﬂ'vz> -0 a5 €T
PTH—E+T >0, L Ap>0. (16)

When the tangential rolling torques are zero, the functions
defining 2/, are not differentiable so the above derivation
does not hold. However, for purposes of exposing our for-
mulation we will assume the opposite the case, and in later
developments (40) we remove this assumptions by using
cone polar formalisms.

group, we have the following problem.

/\(q(l> (I+1) h) _ o

Dy, + WDy, + WDyt )
Z +rnD' +TuD' +TWD'
z V,OW' + hfi(t, g, v) + My
icA

_ i
“@iqW) 4 Oyt 4 a—q: ~0

yr']>0J_ 1¢i(q<>)+DcD' v+ >0
(DTUT + Dy, Ty) +

Ol

DTLMTW

AL O, (p V— /T2 +rW2) =0 (18)

PYh— T2+ T2 >0, L AL>0
OyoyV" (Dy Y+ Dy W) +

_A\i/DVu,Wv <NiV§1— \ ){12+sz) =0
u‘v'n—\/v'uz+w'fzo7 L A>0

O V" (Dr, Th) +
A0, (' —Th]) =

py —|th| >0, L /\'>0

The same derivation can be performed for (12) and (13);

hence the complete model, including inertial effects, éorc
fields, bilateral constraints, unilateral contacts withtfon,
rolling friction, and spinning friction, is the followingifi
ferential variational inequality

This is a mixed nonlinear complementarity problem,
whose solution is not guaranteed to exist. Indeed, most exis
tence results require monotonicity of the mapping defining
the complementarity problem. In turn, this implies contgxi
of the solution set of the nonlinear complementarity prob-
lem [10]. Unfortunately, not even the weaker condition of

q= r(qyv the convexity of the solution set can be guaranteed. Indeed,
dv %Dlw +%Diyu +V\;vDiy<N+ it has been already shown that, for the subcase of a linear
M(a) dt ; (+T' Di 7 Di 7D\ ) + complementarity problem (LCP) corresponding to a simple
'_i Z VJDW +fi(t, q V) " pyramidal frictional model, the solution set may be noncon-
ic» vex [1]. This situation can occur only if the mapping of the
€A : LH'(q t) = ‘ LCP is nonmonotone, which in the linear case implies that
ied 1 >0 L ®'(q) >0 its matrix is not positive semi-definite.

D'[uﬂ'w\/-r (DTui:Li,l + Dl'w{[\‘W) +
o YR <piﬂ1— \/ﬂ,ﬁﬂvz) ~0
pih—\/TZ+T2>0, L AL>0
OyoyV' (Dy Y+ Dy Vo) +
A0y <Hini1 -/ W+ V\}vz) =0
M= W+ >0, L A>0

Og, V" (D, Th) +
AlDTn (O—l% |Tn|) =
MY —IT >0, L /\

17
an 4 Casting to a convex solvable problem

In the following we show that, under mild conditions, the
original problem can be relaxed as a monotone cone com-
plementarity problem (CCP) that guarantees existence of
the solution and convexity of the solution set. The prob-
lem is equivalent to a convex optimization problem, a feasi-
ble quadratic programming problem (QP) with conical con-
straints. We note that while one cannot guarantee uniggenes
of the solution of the CCP (indeed, lack of uniqueness of
the forces is known to appear even in frictionless cases that
are linear and convex problems), one can guarantee under

The former DVI can be discretized in time. Using a time some mild assumptions uniqueness of the velocity solution
steph, posingy = hy, and adopting the exponential map [3]. The latter condition is sufficient for a predictive time
A(-) described in [33] to allow direct integration on the Lie stepping scheme to exist.
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Assume that for each contdat o/ we define the vector By exploiting (26), (19), (20), and so forth, recalling that

of wrench reactions X2/ |X| =
. g (25) as
y!czf = {yll'lv VLIM V|W7 Trlh Tb, T\IN}
o _ YAy oA
and the corresponding twist of local linear and angulaKKevaM — A+ \/y TV + \/y2+y2
velocities in the contact point, plus the stabilizationmer 5 R R
1 i A0 TAw T5A;
F®(q), that is, u W AL
. VIZ+12 12412 [Tl
[ i,T i,T i, T i, T i, T iT
U_Q/—{D(D V+hd3' DVu D v,D7, v,Dy, v DTWV} . VoA :)\v\/V&‘Fszv“r/\w\/T&‘f‘Tvzv‘F)\r‘Tn‘- (27)
In the rest of this section we omit théndexes for compact- By substituting (22), (23), and (24) in (27), and by simplify
ness. ing y», we have that the relaxation term that allows orthogo-
We differentiate the Fritz John optimality conditions nality of y's andu’s is, for theith contaci € 7,
(15) obtaining, for the rolling friction part,
1 A =il [+ O+
-
\' DTU — Awrui (19) . .
2112 10!/ (DLV)2 + (D, V)2 + ' D v, 28)
1 .
vIDy, = )\wTw\/%- (20) The introduction of theAl term has the drawback of
T+ Tw modifying the contact constraint; from a practical point of
Then, view there is the side effect that the gap between objects in-
crease with the sliding speed instead of remaining equal to
Ao = \/(DIUV)2+ (Dg V)% (21)  zero; this effect has been discussed in [33] for the simple

case of sliding friction. Now, introducing also rolling and
spinning friction, one can see from Eq. (28) that rotational
motion increases the gap (t“%(DiTUV)Z-‘r (DY, V)2 term is
also the norm ofwiT), and that the increase is always di-
rected outward. This is the price for having convexified the

original problem. In many situations this can be acceptable
indeed one can demonstrate that at steady state, i.e. when

Note that for the sliding friction one gets similar results,
VIDy, = A1/ V¥ + 1 andvTDy, = Akl/VyE + ¥
with A, = \/(D;JV)ZJF(D;NV)Z; whereas for the spinning
friction V' Dy, = A¢Tn/| Tnl, With Az = Dy V|Tn|/Tn.

Now, the inner product for the complementarity in the
optimality condition requires that

OdiTv = 0 in (26), the separation gag@' decreases with
_ a2 = .
w <pV” m> =0 low speeds, lowu, p, g, and small timesteps.
We note that if we plan to use rolling friction to simulate
Ao/ T&+ T3 = AwPYh- (22)  granular material, the above mentioned side effect of the

relaxation leads to a dilatancy effect that really happens i

Similarly one can derive, for sliding and spinning, )
physical world.

M/ V24 V2 = A 23 Aiming atageneric compact notation, we now introduce
YV Y= A (3) bi, € RS = {1 ' 0,0,0,0,0}", and we build the following
At|Tn| = A0 (24) aggregate vectomgy € RG"W y,, € ROy, c RO:
i T
If we assume the orthogonality ¢f, andu,,, we have b, — {bl,T bz,T . ’br;;,/,T} 7
(Vs Uer) =W(D@TV+ F®) + D] v+ WD} v+ Vo = {V55 VT ‘”}T, (29)
+ T”DInV + TuDIuV + TwDIwV =0. (25) 1T o7 Ny, T
u%:{ud,ud, U }

By adding a relaxation terrA; for the normal velocity,
the orthogonality condition for unilateral contact in the-d ~FOF €ach contact we can define a matrix with six columns,

cretized DVI (18) becomes D' = [Dq_) |D|yu|DIMN|DTn|Dru|DTW] ’ (30)

>0 L FO+00TV+A >0 and a six-dimensional cone that defines the set of admissible

. L . . reactions in the sliding, rolling, spinning friction conta
Since complementarity implies nullity of inner product, we

then have i . M_iVn > \/m,
¥ = eR e > /12412 . 31
Vo (F@+00TV) = —yA >0, (26) Y PR = VTG T (1)

O'Vh > |Tnl
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Similarly, for bilateral constraints, we hawe; € R"#, ii) Either (42)has a solution, or there exisfs, such that
andy, € R"#: Dyy,=0.
. i) If (42)has two solutions{?,, and y;, then they must
by = { Wiy B w2y G2 e ‘Wn”} satisfy Dyyt, =Dy, -
Yo = {V% V- VU} Proof If (42) has a solution, then since the constraifts
Ug = {u@,u?g,...,ugg T are convex, they must satisfy the Kuhn-Tucker conditions,

(32)  which are simply the statement of (41). Conversely, because

of the convexity of the con¥ and of the objective function,
The complete aggregate vectors and matrices of the enyy kyhn-Tucker solution is a global solution, which proves

tire system are Part (i.
For Part (ii), if the objective function of (42) is bounded
_ Iy T T _ T Tt _fpT KT
Vo ={VerVa} Uz ={uy.uz} by ={bybz} . pbelow overthe convex si, it follows that the problem (42)

(33)  must have a solution. Assume that this is not the case, that is

i1 i 1 2 that there exists a seque €Y,n=0,1,2,... such that
nyi = [D|1|D|2‘ e |D|n,17/ ||:|‘1U ‘DLIJ ‘ cen |[|L,Un/}] . (34) 1ynTNyny + r VE/, PN ngfcause Of the cont|nu|ty Of the
Moreover we define the product of all the sliding andobjecnve function, such a sequence must sat

rolling friction cones and the possible values of reactions  (otherwise the objective function would stay bounded). In

bilateral constraints as particular, this implies that
Y = (Xicy V) x (XicaR 35 1
( ico/ ) ( ic# ) ( ) EW;NWy‘FrTWySO;VnZnO (43)

and its polar (note thak° = {0}):
. ' ~ V.,
i for some integeng. Define the scaled vectgr, = = €
V= (icw 2°) x (xic10}). (36) 'or some integero vectdty = €
Y. Since the scaled vector sequence is in the unit ball, which
Now we proceed with a simplification by introducing  is compact, it must have a limit point, which we denote by
¥'». We assume, without loss of generality, that the entire

O — MmOy O g® "
KT = MEVE +hf (1,97, V). (37) sequence converges to this point. Dividing (43)\p)j;||2
From the relaxed version of (18) one can see that=  and taking the limit, we have that the second term goes to 0,
Ny -+r, where and we obtain
N=DLM0 D, (39)  S¥INY,. <O

DM Rip.,
r=bsyM K+bs. (39) Using the expression fay, (38), and the fact that the mass
The entire system is described by the following CCP: matrix is positive definite, this implies thd? ', = 0,

which in turn proves Part (ii) of the theorem.

(Nyy+r)je=y" L yy €Y. (40) For Part (iii), assume that there are two solutions of the

optimization problem (42)y/ andy2/ Then, by the fact
that the objective function is convex and that the const|$a|n
are convex, for any € [0,1], we have thay, +t(y2, —
Yo€Y: (Nyy+ry—yy,) >0 VyeY. (41) isalsoasolution of (42). Thatis, the objective functiohJea

The CCP (40) is also equivalent to a variational inequal-
ity as expressed in the VI of Eq (1), namely

Several theoretical results for (41) can be obtained b Tt(V2, — TN (A Tt - +
noting that it is related to the following optimization prob )(y‘ly (V‘Zy yl)) (y}y (y?y yl))

lem. + (v +t(V —vh)

i tant int. This function is a quadratic, and this can
min fy Ny, +rTy, (42) 'S constant unction 1S ratic,
Vo€ e 7 occur only if the coefficient in? is 0, that is,

Theorem 1 Consider the variational inequality41) and 2y T PR
the optimization problen{42). Then the following state- (Vo =v) N(vo —v) =

ments hold: Again using the expression fot, (38), and the fact that the

i) If (42) has a solution, then that solution satisfies themass matrix is positive definite, this implies tlﬁap(f/} —
variational inequality(41). Conversely, any solution of Vly) = 0, which in turn proves Part (iii) of the theorem. The
(41)is a solution of(42). proof of the theorem is complete. O
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After the dual variableg ., have been obtained from the Looking at (44) and how the velocity solutions are computed
VI (41), one can easily compute also the primal variablesrom the solutions of (42), one can see that this relation-
with the affine mapping: ship implies that the velocities computed from either age th
. . same. The proof of (ii) and the theorem is complete. (]
v+ =MD Dy + MO R, (44)

With this theorem, it follows that under the condition

In what sense the problem has a unique solution nowf pointedness of the friction cone, the VI (41) is well posed
revolves around the results of Theorem 1. The key assumpmnd its solution is unique in velocities. The latter coratitis
tion that we make is that the friction cone of our problem issufficient to result in a predictive simulation, since ituks
pointed that is, in uniqueness of the trajectory. We also point out that in the
case of friction it is unreasonable to expect that the forces
are unique, as can be immediately contemplated from the

Note thatY is only a set of multipliers (that is, the contact €xample of a block resting on a table with friction, which
constraint forces in the coordinates attached to the chntad'as multiple frictional solutions.

not the bodies) that is mapped into friction forces (and the

friction cone, that is, in general coordinate) by means ef th
mappingD.»y ., and thus (45) is a statement about fric-
tion forces. Moreover, we use here an algebraic definitiorb

of pointedness, although it does have a geometrical interéq_ (41) is the most complex and time-consuming task in

pretation in the all-contact case: the friction c@he Y does . . . .
. R . . the simulation process. In fact, the solution of large Vls is
not contain a nontrivial linear space, and thus its origin is . oS .
s N . ~ “currently a debated and actively researched topic in agpplie
pointed”. The reason we use the algebraic formulation is . . . B ) .
. . - . . mathematics, and there exist no unique “best” algorithms to
that it applies for cases where joint constraints are also in . .
. . . .~ approach their solution.

cluded and where the constraint set is algebraically pdinte

. . ; . As a comparison, the much easier linear problems that
but not geometrically. More importantly the algebraic defi- L . . .
o o . . often arise in the simulation of classical ODEs and DAEs
nition is also intuitive from a mechanics perspective: ¢her

. : belong to the so-called polynomi&-class because the
are no contact forces that are valid from a constraint per- g poly 4

. SO o
spective but that produce a zero total force. In other word van pe solved in polynomal ume(n®), if n represents
. o he size of the problem in our case, the number of con-
the multibody system cannot get stuck through its internal, .
. . . straints on the system. On the other hand, Vls (as well as
forces, a configuration known to lead to virtually unpre-

dictable behavior. For one contact, this condition immedi-QPs’ LCPs, and CCPs as special cases) are highly nonlin-

ately holds when we have rolling, sliding, and spinning-fric ear problems, whose general complexity class is said to be

. . nondeterministic-polynomiaNP-hard, which often means
tion; for more contacts, whether this holds depends on the . . .
configuration an intractable growth of computational time for even moder-

With this definition we have the following result, which ate sges ofthe domam [4]- Only special subcases of Vs can
: : . . exploit the more friendly and tractabkeclass, such as the
elucidates the existence and uniqueness of a solution. : .
monotone VIs that we are dealing with. Exact methods for
Theorem 2 Assume that the friction cone attached to thetheir solution, although runing with polynomial tin@(n®),

CCP (or VI)(41) is pointed in the sense of definitigns). ~ Might experience higls; thus the solution is still difficult,
Then and often it is necessary to accept truncation to approximat

_ ] solutions [22].

i) The VI(41)has a solution. _ _ In [33] we presented a fixed-point iteration that can solve
i) Any two solutions of the VI result in the same velocnythe CCP problem with Amontons-Coulomb friction only.
vector(44). Adding the set-valued rolling and spinning friction model

Proof If the friction cone is pointed, then, by Theorem 1 (ii), preS(.anted. in this paper, .one F:an devellc.)p a new fla\{ogr of
that iterative scheme, with minor modifications. Omitting

the optimization problem (42) must have a solution. Thenth detail hat th hod | he followi
by Theorem 1, that solution is also a solution of the vari- e details, we note that the method iterates the following

ational inequality (41), which proves the claim (i). For thefunctlon, Wh'Ch_'S convergent for a proper choices R,
second part, assume that the VI (41) has two solutigbs, A €(0,1] andK:

andy?,. From Theorem 1 (i), these are also solutions of the ,
optimization problem (42). From Theorem 1 (ii), these solu-"~
tions satisfy

Yo €Y,Dyy,=0=y,=0. (45)

5 Numerical solution scheme

btaining the unknowry . dual variables from the VI of

= Ay (Vi — wB" NV, + 1 + K" (Y5 —v5,))) +
+(1-A)Y,,
r=0,12,....

Doyy =Davs. (46)
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Thely operator is a projection onf, so thatlTy(y) = 3:
argmiry .||y — {||. Given the separable cone structure of
Iy as defined in Eq. (35), the computation /@f-(y) can
be split inton,, projectionsl‘l%(y‘) and intony identities 27
(no projections are required for the bilateral constrints £ ; |
The originalﬂ%;(y‘) projection discussed in [33] operates *
only on the three values of the reactions that must obe
the Amontons-Coulomb friction. In the advanced case, how 05}
ever, that includes also rolling friction and spinning {ric

DVI
5¢f analytic

1.

tion one must map the six-dimensional wrench onto the six 00 1 2 3 4 5 6

dimensional cone? defined in Eq. (31), s61},. (') : R® — tisl

RRE. See Appendix C for details about this projection. Fig. 2 Motion of the rolling disk: comparison with classic theory.
Given the requirement of solving a VI for each timestep,

the DVI approach appears to be less competitive than th 1

classic DEM concept of regularizing nonsmooth phenomen: ovI

via smooth but stiff force fields, because DEMs lead to un-
coupled equations of motion of ODE type with basic linear _. 0.6}
O(ny) complexity for each timestep. However, our DVI set- £

ting permits large timesteps because it does not suffer fror >
the stability issues implied by stiff forces in DEMs, so the 0.2¢
increased workload for each timestep is paid back by fewe
timesteps being required [32].

We remark that a parallel version of this rolling and spin- 0 1 2 3 4 5 6
ning friction model can be easily implemented on parallel
hardware of GPU type, as described in [34], and on hybricfig- 3 Velocity of the rolling disk: comparison with classic theory.
high-performance computers [21].

------- analytic

recirculate back in enclosed channels, like tracks in a.tank
In this section we present the simulation of the linear syste
depicted in Fig. 4, as an example of a device that involves
many contacts with rolling friction. The model is based on a
35 mm wide rail, with four rows of recirculating balls, each

A simple validation against the analytical solution for aSt€€l ball having a diameter oRg = 6.4 mm. Nine balls, on

rolling disk is presented here. We consider a rolling disk2V€rage, provide the contact in each row, and the four rows
with radiusR = 1 m, massM = 10 kg, moment of iner- define four contact directions with 4Brientation, as shown

6 Examples

6.1 Comparison against analytical solution

tia J = 4 kgn?, initial positionx|;_o = O m initial horizon- 1N Fig. 5. . _ S

tal speed on x axisy|i_o = 1 m/s, initial angular veloc- Although this type of guideway avoids sliding friction,
ity wli_o = —1 rad/s. We use a rolling friction parameter & small resistance remains, caused by rolling friction, as
p = 0.02 m and a sliding/static friction coefficiept= 0.9. shown in the scheme of Figure 6. This effect can be eas-
The gravity acceleration ig, = —9.8 m/s? ily simulated by using the proposed complemetarity-based

Figure 2 plots the motion of the disk which rolls until @Proach to rolling friction: we modeled the guideway in a
it comes to a rest because of the deceleration caused by tfif CAD software, we saved the parts using a custom trans-
rolling friction. Figure 3 shows that the deceleration isco 12tion software, we imported the file in our software, and we

stant (linear speed) in analytical theory, which uses the co Simulated it.
stant resistant torqu = M - gy - p; a similar behavior can We assumed that the contact between the spheres and the

be seen in the results of the DVI model. raceways is always aligned to the"4firection, so we intro-
duced eight stretched boxes as collision shapes, as shown in
Fig. 7; in this way the collision algorithm of our softwareca

6.2 Simulation of a linear guideway automatically compute the contact points between the balls
and the raceways. In other types of guideways, the raceways

Linear guideways based on recirculating ball bearingserepr are shaped like gothic arcs: these can be modeled as well,

sent an advanced technology for constraining linear motiorbut such nodeling would not add much to the discussion.

They avoid the problem of sliding friction between the trans ~ No significant side contact occurs between rolling balls

lating parts by interposing rows of rolling spheres that car(in some models plastic spacers exclude this posssibility)
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Block collision shapes
Rail collision shapes

) ) Fig. 7 Collision primitives used in the simulation.
Recirculating balls

Upper contact balls —— $=0.004
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—_-— p=0.004, seals

4 .

Fig. 4 The simulated linear guideway, with the scheme of the recircu-
lating balls.

Lower contact ballsj

E‘ : ] e p=0.005, seals
[S— 0 L . — — -
N e |
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S .............. -
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Fig. 8 Resisting forcer for different values of rolling friction pa-
rameterp, with and without the effect of seal friction (case of load
Fy = 490N)

pliance in contacts; in detail, we gener&@efrom the in-
Fig. 5 Section of the linear guideway, showing the contact betweerYe€rses of the stiffness values in contact points, as cordpute

balls and grooves. by the Hertz-Mindlin theory.
The manufacturer of the guideway provides the follow-
. ing formula for estimating the resistance to horizontal-sli
R, R, Rz ing at low speedsy, = —sign(vy)({F,+ S), whereF is the
g l/ AV //\/ /f" normal load,{ is typically about 0005, andSis the force

: caused by the sliding friction of seals and scrapers, in our
\, caseS = 5.3N. Such friction is introduced in our model

N by using a convex box-constraint of the typ& < 5 < S,
| whose effect on the DVI is similar to the already discussed,
p

and more complex, contact constraints. The effect ofthe
term comes from the simulation of the many rolling con-
tacts, each with arolling friction paramefe= (R,. Results
gfrom the simulations show precise agreement with the above
formula, as shown in Fig. 8. For zero speed, the model is

) ) ) ) able to describe also the sticking effect that, although-mod
and we did not consider static preload, although it could b -an be measured on this class of devices.

simulated as well.

Since the system has many more contact constraints
than needed, the indeterminacy is solved by introducing 8.3 Application to the simulation of granular materials
Tikhonov regularization: from a numerical point of viewghi
means adding a nonzero diagofalo theN matrix of EqQ.  The mechanics of granular matter has became a fertile re-
38, that is Ny« = N +C. From a mechanical point of view, search topic only recently, because of the vast computtion
the Tikhonov regularization means that we introduce comfesources that are required. One of the fields that would ben-

Fig. 6 Schematic representation of the forces acting on the rollin
balls.
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efit from advances in this area is pharmaceutical enginee
ing, where multibody dynamics could be used to study pro-
cesses that involve powders: milling, blending, granafati
compression, and coating [17]

In the popular discrete element method (DEM), the bulk
material is discretized in many particles with unilaterad-f
tional contacts [7]. Various micromechanical contact niede
are available in the DEM field in order to define the interac-§
tion between the particles; in most cases, the nonsmooth n
ture of contact means that those models always produce st
contact forces, and hence, that short integration timestey
are needed.

The need of rolling friction in granular simulations
is motivated by experimental evidence; for example [23
shows that rolling resistance can have marked influence o
the mechanics of particle assemblies at microscales; irsonfrid- © A typical P"e of gravel and a conveyor, in a plant for sepaigfi

raw materials.
cases, its effect can be more relevant than interparticle sl
ing friction [36]. Rolling friction has been shown to affect
only marginally the elastic properties of granular assem:
blies, but other collective phenomena such as shear resi
tance and dilatancy are significantly affected [5].

In some cases the simple inhibition of particle rotations
in DEM algorithms can improve the solution with respect
to the case of free frictionless rotation [6]. During thetpas _
few years, more sophisticated models of rolling frictiordna
been proposed for interparticle contacts, for exampledh [1 -
Given the difficulty of tuning the parameters of complex . .
models, approaches based on few parameters such as 1
approach of [15] are welcome. -

To some extent, the macroscopic effect of rolling friction -
in granular media is simular to the effect of dealing with . - = .
nonspherical particles [19].

The collective behavior of particles with irregular and
faceted shapes is different from the behavior of spherical
particles, even if granular assemblies share the same-granu
lometry and friction; in general, oddly shaped particlegite can achieve by introducing particles with odd shapes (which
to generate less deformable assemblies when compared witfould require much larger computational resources).
spherical particles of equal size [35]. Of course, a sttaigh  We simulated the free stacking of 10,000 particles, each
forward approach could take into account the simulation ofvith a diameteiDgs = 45 mm, falling from an height of 1 m
all the detailed shapes, but this would lead to high simaitati into a 2 mx 2 m flat container. The density of the parti-
times, both because there will be multiple contacts betweegles isd = 2028 kg/nt; the sliding friction coefficient is
pairs of particles and because the collision detectionghass = 0.6, also used as static friction coefficient. The flow is
would require more RAM and CPU time to process thoseabout 800 particles/s, and gravity gs= —9.81 m/$. We
contacts. simulated this system for increasing values of rolling and

The rolling friction model discussed above can be usedpinning friction. Specifically, we tested values of rajin
for simulating the granular materials such as in the examfriction parameter in the 6 0.01 m range; for simplicity
ple of Fig. 9. If one tries to simulate the pile of gravel with we made the spinning friction parameter equal to the rolling
plain rigid spheres, the angle of repose of the cone will bene in all tests. The timestep wias- 0.005 s, and the simu-
small when compared with the real case, because the lack tz#ted time 15 s. As shown in Fig. 10, the case without rolling
irregularities on the simulated spheres lead to a loosapgra friction produces an almost flat stack, whereas Fig. 11 shows
lar flow. Yet, by introducing increasing values of rollingdan that the proposed rolling friction model is able to produce a
spinning friction in a model with simple spheres, the stacksteep cone typical of particles of irregular shapes yetifeat
ing is less loose and we can obtain the same results that ongg the benefit of using simple spheres.

Fig. 10 Simulated pile of gravel, without rolling friction. Case with
=0m,o =0m, after 13 s of simulation.
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Angle of repose

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Rolling friction f,=2p/D,

‘_‘-”, g e 2 °, - 9 e Fig. 13 Angle of reposep with sameu = 0.6, for increasing values of
Fig. 11 Simulated pile of gravel, with rolling fnctlom) —00lmand *
spinning frictiono = 0.01 m.

Appendix A: Kinematics of rolling in threedimensional
space

Let w&w andeW denote the angular velocities of two bod-
iesA andB, relative to the absolute reference fraiveand
expressed in the basis of the frafW). We assume A and
B to be rigid or with negligible deformations. Introducing
the rotation matrixRaw € SO(R, 3) that represents the ro-

tation of A respect toV, we havewgw = RAWwAW and

‘*’(B =Rsw wB\av

Let the unimodular quaterniogn\ < Hjy represent the
rotation of the frameA respect to absolute fram&. We
recall that, for unimodular quaternions, the inveesé is
also the conjugate*. We also recall that it is possible to
computeR from € and viceversa.

Thanks to a property of quaternion algebra [13] the rel-
ative rotation of two references is

Fig. 12 Angle of repose for different values of rolling friction.

. EBA = SZ_WSB,W.
7 Conclusion ’

By performing differentiation respect to time, we get

We presented a rolling friction model that fits in the contextzp , — EAWEBW + EAWEBW-

of DVIs, and we discussed theoretical issues about the ex-

istence and uniqueness of the solution. Details about an im- From the result in [27], the quaternion derivative can be
plementation in the form of a convex cone-complementarityiransformed in angular velocity, usipgire quaternions:
problem are given, showing that the approach features a rel-

atively simple algorithmic complexity yet provides stable 0, ‘*’B/Z)] =2e A (47)
fast, and robust solutions. These features, coupled wih th =2&pwew (EawEBW) +26awEBw (EAwEBW) -
ease of use, make the method a good canditate for enriching (48)
the capabilities of DVI simulations of rigid contacts, espe
cially when fast, real-time performance is required or when ~ Since (€1€2)" = £5¢1, and remembering thate* =
alarge number of parts is involved, such as in granular flowsVe can develop Eqg. (48) into

[0, W] = 2EAwEAW + 2EAwWEBWEBWEAW- (49)

Acknowledgements A. Tasora thanks Ferrari Automotive and TP En- The productrwe® . in the second term of the suma-
gineering for financial support. Mihai Anitescu was supportgdHe P BWeBwW

U.S. Department of Energy, under Contract No. DE-AC02-06C387.  tion can be replaced with the pure quaternibio, wgvv\)/]
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using Eq. (47). Also, the first term can be premultipliedstored per each contact
by eaweaw = 1, becoming 2, eawEaweaw; here the

product between the second and tT\I/\r/? quaternion can be ré); A= :R,(:Wﬁ’ _R'(DW)T R(AW>§§4A)} (54)
(pf;():e'? r:/:/;;h V\t,r;ehz';l/;e quaternicso, waw]", again using Eq. D;T/,B _ :7 R,()W>T, Ri(DW)T R,(3W> éBB)} (55)
0,001 ka0, eaw+ kw0, oBlenw. 50) OPA= (0 B RV 0

A rotation in 3D space of the vector part of a pure DI"B: -0’ _R'<°W) REW)} (57)

quaternion can be obtained with unitary quaternions, that i Here we considereB as the reference body: otherwise,

[0,v)] = eaw[0, V™A - if Awere the reference for contact coordinates, signs should
Hence, recalling thato, wXNV\),]* = —[0, w&{v\,&] by the be swapped in all terms in Egs. (52-57).

property of conjugate quaternions, we can rewrite Eq. (50)

and obtain the expected result for relative angular vefocit

Wy Appendix C: Computing projections on intersections of
cones
A A A
0.0 = [0, @y, + [0, WG]
a (A (A) We describe the procedure to compute the euclidean projec-

Waw: (51) tion of a pointx on an intersection of circular cones that have
one common component (in the case studied here, that com-
ponent is the normal force). We assume that a generic point

Appendix B: Formulation of D vectors X is structured as follows:

We assume that the vector of generalized velqciliesn- x=(Xo,I1,l2,...Im), X0 €R, IR, (58)
tains the speeds of the centers of mass of the bat€sex-
pressed in absolute coordinai®¥) and the angular veloc- and that thencircular cones are second-order cones defined

ities w(") expressed in the local coordinates of ttrebody, by
T
asv = [k(lw),w(ll),k(zw),w(zz),..., .
Given a contact between a pair of two rigid bodies

ar_1t<; B, we (ﬁfmti the ptOS't'O?S of the two Cogtf_iCtﬂ? Omtswhereui >0,i=1,2,...,m We are interested in computing
with respect to the centers of mass, expressed in the coqy, projection of a vector x onk;, that is,

dinate systems of the two bodies,s&@ andséB). The ab-
solute rotations of the coordinate systems of the bodies age— IJ (X) < [[x—=%|> = min ||x—y][?.
OKi yenK;

R,(AW), R,(3W> € SO(R, 3) and the absolute rotation of the con-

. W
tact plane isRy" € SO(R,3) = [n,u,w]. Thus, the vectors For example, in the case treated in this work, we are inter-
Dy, Dy, Dy, can be computed a8y = [Dy,,Dy,,Dy,| €  ested in simultaneous modeling of sliding, rolling, anchspi

x € Ki < pixo > /| [lil|?,

R3*M, ning friction in three dimensional configurations. Thatig,
have three conesn = 3 andx is a six-dimensional vector
w)T W)T (W) A ’
D; = {0, Ré ) ) —Ré ) R(A )éfA)a e X = (Y, Yu, ¥, Tu, Tw, Tn)- The mapping (58) is the follow-
T W) oW)«(B) iNg:Xo = Y, l1 = (Vu, W), l2 = (Ty, Tw), I3 = Tn. The friction
0 ... —Re, RVRg"g - 0} , (52) coefficients argi=u, U, = p, Uz = .

- _ ) ~ The crucial observation that simplifies the computation
wheresis the skew symmetric matrix such tat= sAx. of the projection is that the compondnbf the projectionx™
Similarly, recalling the result in Eq.(51), one can com- st he collinear with. Indeed, if this is not the case, then
pl;te the vectordr,, Dy,, Dy, asDr = [Dr,,Dr,,Du] € rotatingii overl; will preserve feasibility but will necessar-
R ily reduce||x— X||, a contradiction. Therefore, there exists
such thalﬂ = tijl;. The optimization that defines the projec-
tion then becomes

wW)T (W
DI:[O, .0, RW'RW

0, ... 0o, —RW'RW ...,o}. (53)

m ) 2
W G000+ 5 (180 —1) 2
) sH1250tm = i
We remark that, because of the extreme sparsity of (52) =
o<t <1, i=12,...,m

and (53), only the following four & 6 matrices need to be
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We have normalized the componentyoin terms ofyyp to
allow for the range of; to be the same. For a giveg, the

3. Minimize the piecewise quadratic on either the one or
two segments identified, and report the result.

optimalt;, which we denote b¥i(yo), is easy to compute.
Indeed we obtain the following

For a small number of breakpoints (i.e., the number of

conesm is small), it is not likely that this reduced method

I I < 4 would practically be much faster than comprehensive enu-
o) =) 17 My = meration.

1 Wil q

HiYo
1]
= ti(Vs )uiyo —1= 0 ayo =1 References
TR WA 1 . -
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) Il2. 3.
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HiYo

miny(yo) := (o—Xo) +Zl[ wu] <|||||

apparent that this function is piecewise quadratic tadl it
is convexIndeed, convexity follows from the fact that each
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